While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures.
Provides comprehensive coverage, from seismology to seismic control
Contains useful empirical equations often required in the seismic analysis of structures
Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations
Works through solved problems to illustrate different concepts
Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book
Provides numerous exercise problems to aid understanding of the subject
As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers.
This title offers a comprehensive coverage of the many facets of seismic engineering.
The first half of the book is devoted to seismic phenomena and hazards, detailing the causes of earthquakes, the parameters used to characterize earthquakes, strong ground motions, seismic hazards and their evaluation, and seismic action. The second half discusses the effects of earthquakes and tools used to assess and reduce risk, including the effects of vibratory motions and induced phenomena, seismic calculations and technical aspects of prevention.
The importance of keeping orders of magnitude in mind (i.e. through reasoning or very simple equations) when discussing seismic phenomena and their effects is emphasized, a task which most people overlook because of their rarity and the brevity of their manifestations.
The current trend of building more streamlined structures has made stability analysis a subject of extreme importance. It is mostly a safety issue because Stability loss could result in an unimaginable catastrophe. Written by two authors with a combined 80 years of professional and academic experience, the objective of Stability of Structures: Principles and Applications is to provide engineers and architects with a firm grasp of the fundamentals and principles that are essential to performing effective stability analysts.
Concise and readable, this guide presents stability analysis within the context of elementary nonlinear flexural analysis, providing a strong foundation for incorporating theory into everyday practice. The first chapter introduces the buckling of columns. It begins with the linear elastic theory and proceeds to include the effects of large deformations and inelastic behavior. In Chapter 2 various approximate methods are illustrated along with the fundamentals of energy methods. The chapter concludes by introducing several special topics, some advanced, that are useful in understanding the physical resistance mechanisms and consistent and rigorous mathematical analysis. Chapters 3 and 4 cover buckling of beam-columns. Chapter 5 presents torsion in structures in some detail, which is one of the least well understood subjects in the entire spectrum of structural mechanics. Strictly speaking, torsion itself does not belong to a topic in structural stability, but needs to be covered to some extent for a better understanding of buckling accompanied with torsional behavior. Chapters 6 and 7 consider stability of framed structures in conjunction with torsional behavior of structures. Chapters 8 to 10 consider buckling of plate elements, cylindrical shells, and general shells. Although the book is primarily devoted to analysis, rudimentary design aspects are discussed.
The accompanying website will include additional formulas and problems based on the author's on software which is currently being used in corporations. The website will also include equations and examples based on there personal experiences. In addition, the website will include a solutions manual for those who wish to use the book as a text book for a two-semester course. Engineers, Architects, designers, and researcher will find this print/website combination a valuable guide both in terms of its applications of verification of design of structures.
Key Features
• Balanced presentation for both theory and practice
• Well-blended contents covering elementary to advanced topics
• Detailed presentation of the development
• Computer programs will be made available through the senior author's web page
Документ свързан с :http://viaz4o.data.bg/p/files/supromat
Връзка създадена на :нд, 2009-юли-12 15:20
За Химия на водата (много повече от наши учебници) - Applications of Environmental Aquatic Chemistry - Eugene Weiler, Second Edition
За хората от 1 поток , 4 курс, да си погледнат формулата за qp на 22 стр, в сниманите от асистента материали е сбъркана !
Сканиран учебник по Геодезическа астрономия.
Детайли по стоманобетон
design of masonry and timber structures
the design of pre-stressed concrete bridges